MySQL - 深入理解RDBMS

MySQL - 深入理解RDBMS

MySQL - 深入理解 RDBMS

课程概述

RDBMS(关系型数据库)是目前使用最为广泛的数据库之一,同时也是整个信息化时代的基石。本节课程通过生活中常见的场景向大家介绍RDBMS的作用、发展历程及其核心技术,最后以字节为例,展示了RDBMS的企业级实践。本节课程主要包含以下内容:

  1. 经典案例
  2. 发展历史
  3. 关键技术
  4. 企业实践

课前材料

RDBMS有相关的数据和材料都非常多,这里主要给大家提供几篇经典论文,从经典的论文中,能够更有效的帮助大家理解RDBMS。

  1. A Relational Model of Data for Large Shared Data Banks

暂时无法在飞书文档外展示此内容

这篇论文是RDBMS的奠基之作,由RDBMS之父E.F.Codd博士于1970年发表。在这篇论文中,E.F.Codd首次提出了用于管理数据的关系模型,并将数据独立于硬件来存储,用户使用一个非过程语言来访问数据。

  1. Readings in Database Systems(Fifth Edition)

暂时无法在飞书文档外展示此内容

这本书被称为数据库领域的“红宝书”,由著名的图灵奖获得者,数据库领域专家,Michael Stonebraker撰写。其中介绍了数据库的基本概念,传统的RDBMS以及新的数据库架构等等,是一本非常棒的数据库领域入门文章。

课程详情

经典案例

通过抖音红包雨的案例,介绍 RDBMS 中 ACID 的概念:

  • 原子性( Atomicity ):事务是一个不可再分割的工作单元,事务中的操作要么都发生,要么都不发生。
  • 一致性( Consistency ):数据库事务不能破坏关系数据的完整性以及业务逻辑上的一致性。
  • 隔离性( Isolation ):多个事务并发访问时,事务之间是隔离的,一个事务不应该影响其它事务运行效果。
  • 持久性( Durability ):在事务完成以后,该事务所对数据库所做的更改便持久的保存在数据库之中,并不会被回滚。

发展历史

数据库发展最初过程中,诞生过3种数据模型,最终关系型模型成为了应用最为广泛的数据库模型。

  • 网状模型:用有向图表示实体和实体之间的联系的数据结构模型称为网状数据模型。
  • 层次模型:层次数据模型是用树状<层次>结构来组织数据的数据模型。
  • 关系模型:使用表格表示实体和实体之间关系的数据模型称之为关系数据模型。
网状模型 层次模型 关系模型
优势 能直接描述现实世界 存取效率较高 结构简单 查询效率高 可以提供较好的完整性支持 实体及实体间的的联系都通过二维表结构表示 可以方便的表示M:N关系 数据访问路径对用户透明
劣势 结构复杂 用户不易使用 访问程序设计复杂 无法表示M:N的关系 插入、删除限制多 遍历子节点必须经过父节点 访问程序设计复杂 关联查询效率不够高 关系必须规范化

关键技术

SQL 执行流程

在SQL执行过程中,需要经历SQL引擎、存储引擎、以及事务引擎等模块。而其中SQL引擎又分为Parser、Optimizer、Executor几个部分:

SQL 引擎

SQL引擎包括了:

  • Paser:经过词法分析、语法分析生成语法树,然后对语法树进行合法性校验。
  • Optimizer:根据Parser产生的语法树,根据规则或者代价产生执行计划树。
  • Executor:根据计划树进行执行,常见的执行方式是火山模型。

存储引擎

存储引擎负责了数据的底层存储、管理和访问工作。各大RDBMS存储引擎的设计都有不少的差异,这里选择MySQL的InnoDB存储引擎来向大家做一个介绍:

  • Buffer Pool:存储引擎位于内存中的重要结构,用于缓存数据,减少磁盘IO的开销。
  • Page:数据存储的最基本单位,一般为16KB。
  • B+u Tree:InnoDB中最常用的索引结构。

事务引擎

事务引擎实现了数据库的ACID能力,这里还是以MySQL的InnoDB为例来介绍数据库内部是通过哪些技术来实现ACID:

  • Atomicity:InnoDB中通过undo日志实现了数据库的原子性,通过Undo Log,数据库可以回滚到事务开始的状态;
  • Isolation:通过Undo Log实现MVCC(多版本并发控制),降低读写冲突。
  • Durability:通过Redo Log(一种WAL实现方式)来保证事务在提交后一定能持久化到磁盘中。
  • Consistency:一致性本质上是一种业务层的限制。

企业实践

字节中是国内数据规模最大的互联网公司之一,公司内部有成千上万套RDBMS系统。这一章节还是以红包雨为案例,展示了字节是如何解决大流量、流量突增、高可靠等问题的。

课后大作业

  1. WAL 日志到底是如何保证数据的持久化,宕机后数据不丢失的?相比于其他方案,WAL 日志都有什么优势?
  2. 除了 Undo Log 之外,是否还有其他方案可以实现 MVCC?
  3. 基于代价的优化器一般需要考虑哪些代价?
  4. 执行器的执行模型,除了本课中提到的火山模型是否还有其他模型?相比于火山模型有什么优劣势?
  5. InnoDB 的 B+ Tree 是怎么实现的?
  6. InnoDB 的 buffer pool 是怎么实现页面管理和淘汰的?

MySQL - 深入理解RDBMS
https://zhangzhao219.github.io/2023/02/11/ByteDanceYouthTrainCamp/ByteDanceYouthTrainCamp-Day16/
作者
Zhang Zhao
发布于
2023年2月11日
许可协议